Maximum power operation of interacting molecular motors
نویسندگان
چکیده
منابع مشابه
Efficiency of molecular motors at maximum power
Molecular motors transduce chemical energy obtained from hydrolizing ATP into mechanical work exerted against an external force. We calculate their efficiency at maximum power output for two simple generic models and show that the qualitative behaviour depends crucially on the position of the transition state or, equivalently, on the load distribution factor. Specifically, we find a transition ...
متن کاملCollective dynamics of interacting molecular motors.
The collective dynamics of N interacting processive molecular motors are considered theoretically when an external force is applied to the leading motor. We show, using a discrete lattice model, that the force-velocity curves strongly depend on the effective dynamic interactions between motors and differ significantly from those of a simple approach where the motors equally share the force. Mor...
متن کاملMolecular motors interacting with their own tracks.
Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state "burnt-bridge" models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explic...
متن کاملInteracting molecular motors: efficiency and work fluctuations.
We investigate the model of "reversible ratchet" with interacting particles, presented by us earlier [F. Slanina, EPL 84, 50009 (2008)]. We further clarify the effect of efficiency enhancement due to interaction and show that it is of energetic origin, rather than a consequence of reduced fluctuations. We also show complicated structures emerging in the interaction and density dependence of the...
متن کاملEnhanced ordering of interacting filaments by molecular motors.
We theoretically study the cooperative behavior of cytoskeletal filaments in motility assays in which immobilized motor proteins bind the filaments to substrate surfaces and actively pull them along these surfaces. Because of the mutual exclusion of the filaments, the coupled dynamics of filaments, motor heads, and motor tails leads to a nonequilibrium phase transition which generalizes the iso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.88.012114